Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Adv Mater ; : e2400894, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636448

RESUMO

Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.

2.
J Nanobiotechnology ; 22(1): 177, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609995

RESUMO

The current first-line treatment for repairing cartilage defects in clinical practice is the creation of microfractures (MF) to stimulate the release of mesenchymal stem cells (MSCs); however, this method has many limitations. Recent studies have found that MSC-derived extracellular vesicles (MSC-EVs) play an important role in tissue regeneration. This study aimed to verify whether MSC-EVs promote cartilage damage repair mediated by MFs and to explore the repair mechanisms. In vitro experiments showed that human umbilical cord Wharton's jelly MSC-EVs (hWJMSC-EVs) promoted the vitality of chondrocytes and the proliferation and differentiation ability of bone marrow-derived MSCs. This was mainly because hWJMSC-EVs carry integrin beta-1 (ITGB1), and cartilage and bone marrow-derived MSCs overexpress ITGB1 after absorbing EVs, thereby activating the transforming growth factor-ß/Smad2/3 axis. In a rabbit knee joint model of osteochondral defect repair, the injection of different concentrations of hWJMSC-EVs into the joint cavity showed that a concentration of 50 µg/ml significantly improved the formation of transparent cartilage after MF surgery. Extraction of regenerated cartilage revealed that the changes in ITGB1, transforming growth factor-ß, and Smad2/3 were directly proportional to the repair of regenerated cartilage. In summary, this study showed that hWJMSC-EVs promoted cartilage repair after MF surgery.


Assuntos
Fraturas de Estresse , Humanos , Animais , Coelhos , Cartilagem , Condrócitos , Fator de Crescimento Transformador beta , Fatores de Crescimento Transformadores
3.
Opt Lett ; 49(8): 1949-1952, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621048

RESUMO

Methods have been proposed in recent years aimed at pushing photoacoustic imaging resolution beyond the acoustic diffraction limit, among which those based on random speckle illumination show particular promise. In this Letter, we propose a data-driven deep learning approach to processing the added spatiotemporal information resulting from speckle illumination, where the neural network learns the distribution of absorbers from a series of different samplings of the imaged area. In ex-vivo experiments based on the tomography configuration with prominent artifacts, our method successfully breaks the acoustic diffraction limit and delivers better results in identifying individual targets when compared against a selection of other leading methods.

4.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526325

RESUMO

N6, 2'-O-dimethyladenosine (m6Am) is a widespread RNA modification catalyzed by the methyltransferase PCIF1 (phosphorylated CTD interacting factor 1). Despite its prevalence, the biological functions of m6Am in RNA remain largely elusive. Here, we report a critical role of PCIF1-dependent m6Am RNA modification in ciliogenesis in RPE-1 cells. Our findings demonstrate that PCIF1 acts as a negative regulator of ciliation through its m6Am methyltransferase activity. A quantitative proteomic analysis identifies BICD2 as a downstream target of PCIF1, with PCIF1 depletion resulting in a significant increase in BICD2 levels. BICD2 depletion leads to a significant reduction in ciliation. Crucially, the ciliary phenotype in PCIF1-depleted cells is reversed upon BICD2 knockdown. Further investigations reveal that PCIF1 regulates BICD2 protein levels through its m6Am catalytic activity, which reduces the stability and translation efficiency of BICD2 mRNA. Single-base resolution LC-MS analysis identifies the m6Am site on BICD2 mRNA modified by PCIF1. These findings establish the essential involvement of PCIF1-dependent m6Am modification in ciliogenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , 60705 , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , Proteômica , Metiltransferases/genética , RNA , RNA Mensageiro/genética , Humanos , Linhagem Celular , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
5.
J Mol Cell Biol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509021

RESUMO

N 6,2'-O-dimethyladenosine (m6Am) is a prevalent modification frequently found at the 5' cap-adjacent adenosine of mRNAs and snRNAs and the internal adenosine of snRNAs. This dynamic and reversible modification is under the regulation of methyltransferases PCIF1 and METTL4, along with the demethylase FTO. m6Am RNA modification plays a crucial role in the regulation of pre-mRNA splicing, mRNA stability, and translation, thereby influencing gene expression. In recent years, there has been growing interest in exploring the functions of m6Am and its relevance to human diseases. In this review, we provide a comprehensive overview of the current knowledge concerning m6Am, with a focus on m6Am-modifying enzymes, sequencing approaches for its detection, and its impacts on pre-mRNA splicing, mRNA stability, and translation regulation. Furthermore, we highlight the roles of m6Am in the context of obesity, viral infections, and cancers, unravelling its underlying regulatory mechanisms.

6.
J Proteome Res ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315831

RESUMO

The extracellular matrix (ECM) is a complex assembly of proteins that provide interstitial scaffolding and elastic recoil for human lungs. The pulmonary extracellular matrix is increasingly recognized as an independent bioactive entity, by creating biochemical and mechanical signals that influence disease pathogenesis, making it an attractive therapeutic target. However, the pulmonary ECM proteome ("matrisome") remains challenging to analyze by mass spectrometry due to its inherent biophysical properties and relatively low abundance. Here, we introduce a strategy designed for rapid and efficient characterization of the human pulmonary ECM using the photocleavable surfactant Azo. We coupled this approach with trapped ion mobility MS with diaPASEF to maximize the depth of matrisome coverage. Using this strategy, we identify nearly 400 unique matrisome proteins with excellent reproducibility that are known to be important in lung biology, including key core matrisome proteins.

7.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405927

RESUMO

BACKGROUND: The adult human heart following a large myocardial infarction is unable to regenerate heart muscle and instead forms scar with the risk of progressive heart failure. Large animal studies have shown that intramyocardial injection of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) following a myocardial infarction result in cell grafts but also ventricular arrhythmias. We hypothesized that intramyocardial injection of committed cardiac progenitor cells (CCPs) derived from iPSCs, combined with cardiac fibroblast-derived extracellular matrix (cECM) to enhance cell retention will: i) form cardiomyocyte containing functional grafts, ii) be free of ventricular arrhythmias and iii) restore left ventricular contractility in a post-myocardial infarction (MI) cardiomyopathy swine model. METHODS: hiPSCs were differentiated using bioreactors and small molecules to produce a population of committed cardiac progenitor cells (CCPs). MI was created using a coronary artery balloon occlusion and reperfusion model in Yucatan mini pigs. Four weeks later, epicardial needle injections of CCPs+cECM were performed in a small initial feasibility cohort, and then transendocardial injections (TEI) of CCPs+cECM, CCPs alone, cECM alone or vehicle control into the peri-infarct region in a larger randomized cohort. A 4-drug immunosuppression regimen was administered to prevent rejection of human CCPs. Arrhythmias were evaluated using implanted event recorders. Magnetic resonance imaging (MRI) and invasive pressure volume assessment were used to evaluate left ventricular anatomic and functional performance, including viability. Detailed histology was performed on the heart to detect human grafts. RESULTS: A scalable biomanufacturing protocol was developed generating CCPs which can efficiently differentiate to cardiomyocytes or endothelial cells in vitro. Intramyocardial delivery of CCPs to post-MI porcine hearts resulted in engraftment and differentiation of CCPs to form ventricular cardiomyocyte rich grafts. There was no significant difference in cardiac MRI-based measured cardiac volumes or function between control, CCP and CCP+cECM groups; however, dobutamine stimulated functional reserve was improved in CCP and CCP+cECM groups. TEI delivery of CCPs with or without cECM did not result in tumors or trigger ventricular arrhythmias. CONCLUSIONS: CCPs are a promising cell source for post-MI heart repair using clinically relevant TEI with a low risk of engraftment ventricular arrhythmias.

8.
FASEB J ; 38(2): e23406, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193601

RESUMO

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.


Assuntos
Fibroblastos Associados a Câncer , Proteínas Matrilinas , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese , Proteínas Matrilinas/genética , Invasividade Neoplásica , 60422 , Neoplasias Gástricas/genética , Microambiente Tumoral
9.
Cytotherapy ; 26(1): 81-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37930292

RESUMO

Cardiac fibroblasts (CFs) are critical components of the cardiac niche and primarily responsible for assembly and maintenance of the cardiac extracellular matrix (ECM). CFs are increasingly of interest for tissue engineering and drug development applications, as they provide synergistic support to cardiomyocytes through direct cell-to-cell signaling and cell-to-ECM interactions via soluble factors, including cytokines, growth factors and extracellular vesicles. CFs can be activated to a cardiac myofibroblast (CMF) phenotype upon injury or stimulation with transforming growth factor beta 1. Once activated, CMFs assemble collagen-rich ECM, which is vitally important to stabilize scar formation following myocardial infarction, for example. Although there is greater experience with culture expansion of CFs among non-human strains, very little is known about human CF-to-CMF transitions and expression patterns during culture expansion. In this study, we evaluated for shifts in inflammatory and angiogenic expression profiles of human CFs in typical culture expansion conditions. Understanding shifts in cellular expression patterns during CF culture expansion is critically important to establish quality benchmarks and optimize large-scale manufacturing for future clinical applications.


Assuntos
Miocárdio , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Secretoma , Fibroblastos , Fenótipo , Expressão Gênica
10.
J Control Release ; 366: 128-141, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104775

RESUMO

Tumor-associated macrophages play pivotal roles in tumor progression and metastasis. Macrophage-mediated clearance of apoptotic cells (efferocytosis) supports inflammation resolution, contributing to immune evasion in colorectal cancers. To reverse this immunosuppressive process, we propose a readily translatable RNA therapy to selectively inhibit macrophage-mediated efferocytosis in tumor microenvironment. A clinically approved lipid nanoparticle platform (LNP) is employed to encapsulate siRNA for the phagocytic receptor MerTK (siMerTK), enabling selective MerTK inhibition in the diseased organ. Decreased MerTK expression in tumor-associated macrophages results in apoptotic cell accumulation and immune activation in tumor microenvironment, leading to suppressed tumor growth and better survival in both liver and peritoneal metastasis models of colorectal cancers. siMerTK delivery combined with PD-1 blockade further produces enhanced antimetastatic efficacy with reactivated intratumoral immune milieu. Collectively, LNP-based siMerTK delivery combined with immune checkpoint therapy may present a feasible modality for metastatic colorectal cancer therapy.


Assuntos
Neoplasias do Colo , 60574 , Humanos , c-Mer Tirosina Quinase , Macrófagos , RNA Interferente Pequeno , Microambiente Tumoral
11.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(9): 1169-1176, 2023 Sep 15.
Artigo em Chinês | MEDLINE | ID: mdl-37718433

RESUMO

Objective: To review the research progress in biotherapy of rotator cuff injury in recent years, in order to provide help for clinical decision-making of rotator cuff injury treatment. Methods: The literature related to biotherapy of rotator cuff injury at home and abroad in recent years was widely reviewed, and the mechanism and efficacy of biotherapy for rotator cuff injury were summarized from the aspects of platelet-rich plasma (PRP), growth factors, stem cells, and exosomes. Results: In order to relieve patients' pain, improve upper limb function, and improve quality of life, the treatment of rotator cuff injury experienced an important change from conservative treatment to open surgery to arthroscopic rotator cuff repair. Arthroscopic rotator cuff repair plus a variety of biotherapy methods have become the mainstream of clinical treatment. All kinds of biotherapy methods have ideal mid- and long-term effectiveness in the repair of rotator cuff injury. The biotherapy method to promote the healing of rotator cuff injury is controversial and needs to be further studied. Conclusion: All kinds of biotherapy methods show a good effect on the repair of rotator cuff injury. It will be an important research direction to further develop new biotherapy technology and verify its effectiveness.


Assuntos
Exossomos , Lesões do Manguito Rotador , Humanos , Artroplastia , Qualidade de Vida , Lesões do Manguito Rotador/terapia , Produtos Biológicos/uso terapêutico
12.
Protein Cell ; 14(9): 653-667, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37707322

RESUMO

Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Camundongos , Autofagossomos , Homeostase , Triglicerídeos
13.
Angew Chem Int Ed Engl ; 62(45): e202311223, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37721360

RESUMO

Zeolitic metal-organic frameworks (ZMOFs) have emerged as one of the most promsing catalysts for energy conversion, but they suffer from either weak bonding between metal-organic cubes (MOCs) that decrease their stability during catalysis processes or low activity due to inadequate active sites. In this work, through ligand-directing strategy, we successfully obtain an unprecedented bismuth-based ZMOF (Bi-ZMOF) featuring a ACO topological crystal structure with strong coordination bonding between the Bi-based cages. As a result, it enables efficient reduction of CO2 to formic acid (HCOOH) with Faradaic efficiency as high as 91 %. A combination of in situ surface-enhanced infrared absorption spectroscopy and density functional theory calculation reveals that the Bi-N coordination contributes to facilitating charge transfer from N to Bi atoms, which stabilize the intermediate to boost the reduction efficiency of CO2 to HCOOH. This finding highlights the importance of the coordination environment of metal active sites on electrocatalytic CO2 reduction. We believe that this work will offer a new clue to rationally design zeolitic MOFs for catalytic reaction.

14.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630002

RESUMO

This paper develops the mechanical and durable samples of C50 high-performance concrete, studies the mechanical properties, crack resistance, sulfate attack resistance, frost resistance, and impermeability of concrete with different mineral admixtures of mineral powder and fly ash, and obtains the best mineral admixture of mineral powder and fly ash to improve the performance of high-performance concrete. The results show that the doping effect is the best when the ratio of prepared mineral powder to fly ash is 3:2. With the increase in the mineral powder-fly ash admixture, the slump and expansion of high-performance concrete decrease rapidly at first and then slowly. In total, 60% doping is the turning point; the compressive and flexural strengths of concrete decreased slowly at first and then rapidly. Taking 30% of the admixture as the turning point, 35% of the mineral powder fly ash is generally selected. By mixing and adding a certain proportion of fly ash and mineral powder admixtures, the crack resistance of concrete is enhanced, and the shrinkage and cracking are reduced. The corrosion resistance coefficient will exceed 88%, the relative dynamic elastic modulus will exceed 95%, and the impermeability grade will reach P17. The durability of concrete can be improved by adding mineral admixtures.

15.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(4): 397-405, 2023 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37643974

RESUMO

Long non-coding RNAs (lncRNAs) which are usually thought to have no protein coding ability, are widely involved in cell proliferation, signal transduction and other biological activities. However, recent studies have suggested that short open reading frames (sORFs) of some lncRNAs can encode small functional peptides (micropeptides). These micropeptides appear to play important roles in calcium homeostasis, embryonic development and tumorigenesis, suggesting their potential as therapeutic targets and diagnostic biomarkers. Currently, bioinformatic tools as well as experimental methods such as ribosome mapping and in vitro translation are applied to predict the coding potential of lncRNAs. Furthermore, mass spectrometry, specific antibodies and epitope tags are used for validating the expression of micropeptides. Here, we review the physiological and pathological functions of recently identified micropeptides as well as research strategies for predicting the coding potential of lncRNAs to facilitate the further research of lncRNA encoded micropeptides.


Assuntos
RNA Longo não Codificante , Feminino , Gravidez , Humanos , RNA Longo não Codificante/genética , Projetos de Pesquisa , Anticorpos , Carcinogênese
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(4): 406-416, 2023 Aug 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37643975

RESUMO

RNA therapeutics inhibit the expression of specific proteins/RNAs by targeting complementary sequences of corresponding genes or encode proteins for the synthesis desired genes to treat genetic diseases. RNA-based therapeutics are categorized as oligonucleotide drugs (antisense oligonucleotides, small interfering RNA, RNA aptamers), and mRNA drugs. The antisense oligonucleotides and small interfering RNA for treatment of genetic diseases have been approved by the FDA in the United States, while RNA aptamers and mRNA drugs are still in clinical trials. Chemical modifications can be applied to RNA drugs, such as pseudouridine modification of mRNA, to reduce immunogenicity and improve the efficacy. The secure and effective delivery systems such as lipid-based nanoparticles, extracellular vesicles, and virus-like particles are under development to address stability, specificity, and safety issues of RNA drugs. This article provides an overview of the specific molecular mechanisms of eleven RNA drugs currently used for treating genetic diseases, and discusses the research progress of chemical modifications and delivery systems of RNA drugs.


Assuntos
Aptâmeros de Nucleotídeos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , RNA Mensageiro , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico
17.
J Orthop Surg Res ; 18(1): 481, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403163

RESUMO

BACKGROUND: Osteochondral injury is a common sports injury, and hyaline cartilage does not regenerate spontaneously when injured. However, there is currently no gold standard for treating osteochondral defects. Osteochondral autograft transplantation (OAT) is widely used in clinical practice and is best used to treat small osteochondral lesions in the knee that are < 2 cm2 in size. Autologous dual-tissue transplantation (ADTT) is a promising method with wider indications for osteochondral injuries; however, ADTT has not been evaluated in many studies. This study aimed to compare the radiographic and histological results of ADTT and OAT for treating osteochondral defects in a porcine model. METHODS: Osteochondral defects were made in the bilateral medial condyles of the knees of 12 Dian-nan small-ear pigs. The 24 knees were divided into the ADTT group (n = 8), OAT group (n = 8), and empty control group (n = 8). At 2 and 4 months postoperatively, the knees underwent gross evaluation based on the International Cartilage Repair Society (ICRS) score, radiographic assessment based on CT findings and the magnetic resonance observation of cartilage repair tissue (MOCART) score, and histological evaluation based on the O'Driscoll histological score of the repair tissue. RESULTS: At 2 months postoperatively, the ICRS score, CT evaluation, MOCART score, and O'Driscoll histological score were significantly better in the OAT group than the ADTT group (all P < 0.05). At 4 months postoperatively, the ICRS score, CT evaluation, MOCART score, and O'Driscoll histological score tended to be better in the OAT group than the ADTT group, but these differences did not reach statistical significance (all P > 0.05). CONCLUSIONS: In a porcine model, ADTT and OAT are both effective treatments for osteochondral defects in weight bearing areas. ADTT may be useful as an alternative procedure to OAT for treating osteochondral defects.


Assuntos
Cartilagem Articular , Fraturas Intra-Articulares , Suínos , Animais , Autoenxertos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Cartilagem Articular/lesões , Transplante Autólogo/métodos , Cartilagem Hialina , Articulação do Joelho/cirurgia , Resultado do Tratamento
18.
J Nanobiotechnology ; 21(1): 145, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37127609

RESUMO

Colon-targeted oral drug delivery systems (CDDSs) are desirable for the treatment of ulcerative colitis (UC), which is a disease with high relapse and remission rates associated with immune system inflammation and dysregulation localized within the lining of the large bowel. However, the success of current available approaches used for colon-targeted therapy is limited. Budesonide (BUD) is a corticosteroid drug, and its rectal and oral formulations are used to treat UC, but the inconvenience of rectal administration and the systemic toxicity of oral administration restrict its long-term use. In this study, we designed and prepared colon-targeted solid lipid nanoparticles (SLNs) encapsulating BUD to treat UC by oral administration. A negatively charged surfactant (NaCS-C12) was synthesized to anchor cellulase-responsive layers consisting of polyelectrolyte complexes (PECs) formed by negatively charged NaCS and cationic chitosan onto the SLNs. The release rate and colon-specific release behavior of BUD could be easily modified by regulating the number of coated layers. We found that the two-layer BUD-loaded SLNs (SLN-BUD-2L) with a nanoscale particle size and negative zeta potential showed the designed colon-specific drug release profile in response to localized high cellulase activity. In addition, SLN-BUD-2L exhibited excellent anti-inflammatory activity in a dextran sulfate sodium (DSS)-induced colitis mouse model, suggesting its potential anti-UC applications.


Assuntos
Celulases , Colite Ulcerativa , Colite , Nanopartículas , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Budesonida , Colo , Colite/induzido quimicamente , Celulases/uso terapêutico , Modelos Animais de Doenças
20.
EMBO J ; 42(8): e112387, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36872914

RESUMO

The cGAS-STING pathway plays an important role in host defense by sensing pathogen DNA, inducing type I IFNs, and initiating autophagy. However, the molecular mechanism of autophagosome formation in cGAS-STING pathway-induced autophagy is still unclear. Here, we report that STING directly interacts with WIPI2, which is the key protein for LC3 lipidation in autophagy. Binding to WIPI2 is necessary for STING-induced autophagosome formation but does not affect STING activation and intracellular trafficking. In addition, the specific interaction between STING and the PI3P-binding motif of WIPI2 leads to the competition of WIPI2 binding between STING and PI3P, and mutual inhibition between STING-induced autophagy and canonical PI3P-dependent autophagy. Furthermore, we show that the STING-WIPI2 interaction is required for the clearance of cytoplasmic DNA and the attenuation of cGAS-STING signaling. Thus, the direct interaction between STING and WIPI2 enables STING to bypass the canonical upstream machinery to induce LC3 lipidation and autophagosome formation.


Assuntos
Autofagossomos , Autofagia , Proteínas de Membrana , Autofagossomos/metabolismo , Autofagia/fisiologia , DNA/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...